

Direct Diode Detection (3D), Base-Band Q (BBQ) Measurement, Some SPS and PS 2004 Results

Marek GASIOR, CERN-AB-BDI

Outline

- Limitations of existing techniques
- The Direct Diode Detection (3D) principle
- The Baseband Tune (BBQ) system
- CERN SPS and PS results
- Summary

Tune Measurement – Classical Approach

The classical approaches to tune measurement

- Single frequency detection:
 - Sample pick-up data turn by turn
 - Produce a difference signal
 - Filter around a single revolution line
 - Detect this frequency
- Homodyne detection:
 - Sample pick-up data turn by turn
 - Produce a sum and difference signal
 - Mix the difference signal with the sum
 - moves the pick-up response into baseband
 - Low pass filter & detect in baseband

Tune Measurement – Classical Approach

tune modulation modulation depth

$$s_{c}(t) = \cos(2p f_{b} t) \left(s_{b}(t) * \sum_{n=-\infty}^{\infty} \mathbf{d}(t - nT) \right) + s_{o}(t) * \sum_{n=-\infty}^{\infty} \mathbf{d}(t - nT)$$

Orbit offset

$$\begin{split} S_c(f) &= \left| \frac{1}{2} S_b(f - f_b) \sum_{n = -\infty}^{\infty} \boldsymbol{d} \left(f - f_b - \frac{n}{T} \right) + \right. \\ &+ \frac{1}{2} S_b(f + f_b) \sum_{n = -\infty}^{\infty} \boldsymbol{d} \left(f + f_b - \frac{n}{T} \right) + \\ &+ S_o(f) \sum_{n = -\infty}^{\infty} \boldsymbol{d} \left(f - \frac{n}{T} \right) \right| \end{split}$$

Tune Measurement – Classical Approach

- LHC bunch length $(4s) \sim 1$ ns \Rightarrow bunch spectrum cut-off of ~ 500 MHz.
- For one bunch in the machine, the revolution lines are spaced by 11 kHz.
 - > ~ 50 000 revolution lines & ~ 100 000 betatron lines within the bunch spectrum
- The classical "one line filtering method" looks at ~ 0.00001 of this spectral content.

Classical Tune Measurement – Limitations

- Classical "one line filtering" looks at ~ 0.00001 of LHC spectral content
- Typical pick-up response is maximum in 100s MHz region
 - Use of high frequency electronics
- Requires dealing with very small signals in presence of large revolution lines
 - low noise amplifiers and mixers with limited dynamic ranges
 - saturation by huge revolution content.
- Resonant pick-up
 - Considerably improves response at the detection frequency
 - -Enhancement not effective for single bunches
 - bunches do not pop-up in the PU often enough to maintain the resonance
 - -Still requires low noise amplifiers and mixers
 - Saturation by revolution line remains a problem

Direct Diode Detection – the Principle

$$s_{b1}(t) = s_b(t) (1+\mathbf{a}) (1+\mathbf{b}\cos(2p f_b t))$$

$$s_{b2}(t) = s_b(t) (1-\mathbf{a}) (1-\mathbf{b}\cos(2p f_b t))$$

beam offset a = 0.1betatron oscillation amp. b = 0.05simulated tune value q = 0.1

5

10

15

t/T

25

20

Direct Diode Detection – the Principle

Direct Diode Detection – the Principle

Direct Diode Detection - SNR

$$G_S = \frac{T}{\sqrt{2p}s} \cdot \frac{C_{pu}}{C_{pu} + C_f} \cdot \left| \frac{\mathbf{t} \left(1 - \exp(-j2p \, q - T/\mathbf{t}) \right)}{1 + j2p \, q} \right|$$

$$G_{D} = \frac{\frac{V_{nC}T}{\sqrt{ps}} \cdot \frac{R_{f}C_{f}C_{pu}}{C_{pu} + C_{f}} \left| \frac{1 - \exp(-j2pq - T(R_{f}C_{f})^{-2})}{1 + j2pq} \right|}{\sqrt{V_{nA}^{2} + \frac{T^{2}R_{f}^{2}\left(2eI_{RD} + \frac{4k\Theta}{R_{f}} + I_{nA}^{2}\right)}{T^{2} + (2pqR_{f}C_{f})^{2}}}$$

BBQ Architecture

BBQ Architecture

REF LEVEL /DIV 35.000dB 10.000dB

- GP CR
- Revolution frequency is attenuated by some 100 dB over an octave (f_r/2 is still within the bandwidth)
- The dynamic range of the first amplifier is some 15 V

SPS BBQ Measurements – Transverse Damper Noise

SPS BBQ Measurements – Mains Ripple in the Beam Spectrum

SPS BBQ Measurements – LHC Collimator Impedance

PS BBQ Measurements – AD Cycle

PS BBQ Measurements – LHC Cycle – Mains Ripple

BBQ Advantages / Disadvantages

More measurements and other plots from the presented measurements can be seen on the BBQ web site

Advantages

- Sensitivity
- Virtually impossible to saturate
- Simplicity
- No resonant PU, no movable PU, no hybrid, no mixers
- It can work with any PU
- Base-band operation guaranties the independence of the machine filling pattern
- Signal conditioning / processing in the base-band is easy (powerful components for low frequencies)
- Flattening out the beam dynamic range (small sensitivity to the bunch number)

Disadvantages

- Operation in the low frequency range
- It is sensitive to the "bunch majority"

www.cern.ch/gasior/pro/3D-BBQ/3D-BBQ.html